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Abstract
From the Lax pair and the binary Darboux transformation of a coupled
Korteweg–de Vries system, we show that its nonlinear superposition formula is
identical to that obtained for the Kaup–Kupershmidt equation. Therefore, the
N -soliton solution can be associated with a determinant of the Gram type.

PACS numbers: 02.30.Jr, 02.30.Ik, 02.30.Uu

1. Introduction

In [1], Karasu and Sakovich performed the Painlevé analysis of the system of two coupled
nonlinear evolution equations of Korteweg–de Vries (KdV) type
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(1)

which, in setting u = 3a
b
wx and eliminating v, is equivalent to the sixth-order equation
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They showed that the equation passes the Painlevé test, and using the truncation method of
Weiss et al [2] derived a Bäcklund transformation (BT). Then they built special solutions
generated by this transformation from the vacuum w = 0.

The system (1) was found by Satsuma and Hirota [5] as a special case of the four-reduction
of the KP hierarchy; more precisely, it is the system numbered in their paper as (4.18a), (4.18b).
(It was also proposed by Drinfel’d and Sokolov [3] and Bogoyavlenskii [4].) Moreover,
Satsuma and Hirota gave for (1) the expression of the one-soliton
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κ3t + δ κ and δ arbitrary constants (4)
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as well as the fourth-order Lax pair
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ψ = λ4ψ. (6)

In their paper, Karasu and Sakovich noticed that their BT is probably not the simplest one for
the system (1) for the reason that they apparently could not recover the expression (4) of the
one-soliton solution.

In this Letter we show that by considering the Darboux transformation (DT)

w = ∂x log f + W with f =
∫ x

ψ2 dx (7)

where w and W are two solutions of (2) and ψ a solution of the Lax pair (5), (6), eliminating ψ

between the DT and the Lax pair, we obtain the same BT as Karasu and Sakovich. Furthermore,
remarking that one of the two equations determining the BT can be associated with the Gambier
25 equation [6], as we did previously [7, 8] for the Kaup–Kupershmidt partial differential
equation, we easily derive the nonlinear superposition formula (NLSF) for equation (2) and
show that the N -soliton solution is related to the logarithmic derivative of a determinant of the
Gram type, as introduced by Nakamura [9] for the KP equation.

We also show that the rational solutions given by Karasu and Sakovich are trivially retrieved
by setting in (5), (6) u = v = 0 and λ = 0, taking account of the DT (7), and that for λ �= 0 their
last solution corresponds to the one-soliton solution (4) if one makes an appropriate choice of
the constants of integration.

Finally, we indicate the construction of the N -soliton solution and give the explicit
expression of the two-soliton.

2. Bäcklund transformation and nonlinear superposition formula

The elimination of ψ between the DT (7) and the Lax pair (5), (6), taking into account that (5)
possesses the first integral∫ x

(ψ2)t dx = 2aψψxx − aψ2
x + buψ2 (8)

yields the BT
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and if one uses (9) to eliminate the highest derivative in (10), we obtain exactly the same BT
as Karasu and Sakovich.

Now, let us remark that the integral of the right-hand side of equation (9) can be identified
with the nonlinear ordinary differential equation G25 of the Gambier classification [6],
possessing the Painlevé property and already associated with the BT of the Kaup–Kupershmidt
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equation in [7]. Therefore, considering four copies of the equation (9) for p = w12 − w2,
w12 − w1, w2 − w0, w1 − w0, i.e.
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and making the combination which eliminates the linear terms, we can integrate once with
respect to x and obtain the first-order, second-degree ordinary differential equation:

(w12,x + w2
12 − Aw12 + 2B)2 − C2(w12 − w1)(w12 − w2)
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= 4
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with coefficients
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C = w0,x + w2
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where K is a constant of integration.
Setting K = 0, wi = ∂x log fi, i = 0, 1, 2, 12 and defining
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we obtain the third-order linear equation for F12
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which possesses the general solution
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Setting K1 = K2 = 0 and taking account of the definitions (14) and (7), the NLSF for (2) is

f12 = f0

∣∣∣∣
∫ x

ψ2
1

∫ x
ψ1ψ2∫ x

ψ1ψ2
∫ x

ψ2
2

∣∣∣∣ (19)

which is exactly the same expression as the NLSF for the Kaup–Kupershmidt equation [8].
Therefore, taking into account for the construction of the N -soliton solution that the seed
solution is f0 = 1, one may iterate the formula (19) [10] and obtain the N -soliton solution:

f (N) = det

[ ∫ x

ψiψj dx

]
1�i,j�N

(20)

where ψi is the vacuum wavefunction, solution of the system (5), (6) for v = u = 0, λ = λi .

3. Construction of the N -soliton

For λ = 0, the vacuum wavefunction ψ0 is a third-degree polynomial in x

ψ0 = c1x
3 + c2x

2 + c3x + 6ac1t + c4 (21)

and following the values given to the arbitrary constants c1, c2, c3, c4 one easily generates
with the DT (7), setting W = 0, the solutions numbered (9)–(12) in the paper of Karasu
and Sakovich corresponding respectively to the choice of parameters ci : c1 = c2 = c3 = 0,
c1 = c2 = c4 = 0, c1 = c3 = 0, c2 = c4 = 0.

For λ �= 0, the vacuum wavefunction ψk is a superposition of four exponentials:

ψk = Akeλkx+aλ3
k t + Bke−λkx−aλ3

k t + Ckeiλkx−iaλ3
k t + Dke−iλkx+iaλ3

k t i2 = −1 (22)

and one has that
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k(AkBk − CkDk)t (23)

which yields the solution (13) in the paper of Karasu and Sakovich. To build the N -soliton
solution, one considers the particular case

Ak = Ck = 0. (24)

We first derive the expression of the one-soliton solution. Setting λk ≡ λ, Bk ≡ B,
Dk ≡ D in (23), we have
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2λ
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(
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Therefore, up to an exponential linear in x and t one has that

f = 1 + 2eθ + 1
2 e2θ θ = κx − a

2
κ3t + δ δ = log
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Using the expression (22) and the relation (19) for k = 1, 2 in the formula (24), one obtains
for the two-soliton solution

f12 = 1 + 2eθ1 + 2eθ2 +
1
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2 )
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2
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4
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2
κ3
j t + δj δj = Cj(1 + i)(−iκj + κl)(κj + κl)

Bj (κj − κl)(κj − ikl)
1 � j, l � 2 l �= j κj = (1 − i)λj .

(27)

To build the N -soliton solution, we set (24) in (20) for 1 � j, l � N .
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